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Three ignored densities, frame-independent thermodynamics, and broken Galilean symmetry

Peter Kostdt and Mario Lidf
Institut fir Theoretische Physik, Universttédlannover, 30167 Hannover, Germany
(Received 14 May 1998

A system’s invariance under Galilean transformation implies three locally conserved densities. Including
them as variables, the thermodynamics is rendered explicitly frame independent, dissipative mass currents are
shown to vanish, and spontaneously broken Galilean symmetry becomes a sensible concept in condensed
systems[S1063-651X98)08411-§

PACS numbds): 05.70.Ln

I. INTRODUCTION the energy, mass, momentum, and angular momentum, we
find as equilibrium conditions constant temperature and
The invariance under Galilean boosts of a closed systemhemical potential, with the velocity given as=V+Q
implies the conservation of XX, whereV and(Q are again constant. Due to the lack of a
time-dependent term, however, this velocity is less general
than the usual expression for a rigid body=R+ QX (x
—R), or equivalently

B=MRy, )

where M is the system’s mass, arf®, its center of mass
coordinate at the time=0 [1]. Despite the appearance of an
initial value that can always be set to zero by an appropriate
choice of the coordinateB is an additive and locally con- . . . .

served quantity, in complete analogy to energy, mass, mo(-The difference is in the last termThis is worrisome as

mentum, and angular momentum. As these are all thermod)}here is no reason whatever why a system executing the gen-

namic and hydrodynamic variables, it is a valid question whyeral mot!on should not be in eqwhbnum. It howevgr, the
B is never included. This paper shows the usefulness, evel?_'ooster is also held constant in the above calculation, one

necessity, of including, summarized in the following list. d_oes arnve at the general Eexpression, Bj‘ .At the same .

(i) The inclusion ofB as a variable is a necessary condi- time, one finds th.at'the chemical potentlal_, msteaq (.)f being
tion for the formulation of a frame-independent thermody-conStant’ now Sat'.Sf'eBVJrV'“.:O' Reassurlngly, this is ex-
namic theory: Starting from the rest frame expression, sa ctly the expression the Navier-Stokes equation reduces to

dE=TdS it may seem all right to ad¥ - dG for a boosted or anishing entropy p.roduction, in equilibriqm. .
system with the momentur®, and addQ-dL if it also (iii) Local conservation of the mass density holds if the

rotates with the angular momentum but this is not enough. continuity equationdo +V-j=0 is satisfied—irrespective
As shown in Sec. Il, this is only correct for frames in which Of. what f(_)rm the mass curregtactuglly assumes. Usually,
QIG, while generally the energi also depends oB. this form is taken ag= pv, although it has never been prop-

Before going on with the list, it is convenient to introduce erly Qeduceq; .r'ather, it is accepted as a statement O.f micro-
a name for scopic plausibility, or the summary of countless experiments.

So no objection was, or could have been, raised, when Dzy-
) aloshinskii and Volovik, in their classic papet], proposed
B=M(R- Rt)=f d3x(ox—gt), (20 inclusion of dissipative mass currents such as

v=(R—OQXRy)+ QX x—(QXR)t. 3

whereR=R,+ Rt is the time-dependent center of mass co- Jmev=Vp. @
ordinate, with a constant time derivati®=G/M, while ¢ (These dissipative terms result from a tempting, even natural,
and g denote the density of mass and momentum, respeGtep to take when setting up the hydrodynamic equations.
tively. Following Schwinge(2], we shall refer toB as the  On the other hand, there is a well-hidden footnote by Landau
booster,” and tob=g@x—gt as the “booster density.” In-  and Lifshitz[5] that purports to rule out this type of terms—

cluding the energy's dependence on the boos#ét=---  put actually falls short of being ironclad if scrutinized: It
+A-dB, the conjugate variablé will turn out to be  invokes the center of mass motion to show that’x)
XR. = [d®xg must prevail, where the integration is to be taken

(ii) One of the more direct results of the thermodynamicover the volume of the system. For reasons of Galilean in-
theory is the equilibrium conditions. Again, the correct deri-variance, the momentum density is given@sov. So a
vation requires the inclusion of the booster, although this islear-cut proof offj=g would indeed serve as a sound argu-
never done. If one derives them following Landau and Lif- ment for ruling out any dissipative mass currents. Unfortu-
shitz [3] by maximizing the entropy while holding constant nately, fd3xj= [d®xg is less confining, and the reader is left

wondering about terms that vanish only if integrated.
As will be discussed in Sec. lll, taking the booster density
*Electronic address: kostaedt or liu@itp.uni-hannover.de ox—gt as a locally conserved quantity that satisfies a conti-
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nuity equation quickly leads to the resyk=g. The proof Sas a thermodynamic variable, but not a hydrodynamic one
takes place in very much the same way as that deducing tHéhe precise meaning of which will become clear thefide
symmetry of the stress tensor from the local conservation oglose analogy betwees and k makes it easy to treat the
angular momentum(This result also has relativistic ramifi- latter along the same line. One of the results, based on fairly
cations, as it shows that out of the two versions of relativisticdeneral thermodynamic considerations, is that the booster’s
hydrodynamics, by Eckart and by Landau-Lifshitz, only theanalog of the Einstein—de Haas effect does not exist.
latter is a proper generalizatigf]. Any linear combination (v) Finally, a truly serendipitous result: the collective, hy-
of both is also ruled out. drodynamic behavior of systems that spontaneously break
(iv) The angular momentum frequently contains an extenGalilean symmetries. This subject has until now eluded clari-

sive parts that is usually referred to as its intrinsic contribu- fication because the relevant conserved quantity, the booster,
tion, has been neglected. Again, the analogy between the angular

momentum and the booster comes in handy here, as broken
5 rotational symmetry is a well-understood concgf8]. The
LZJ d*x(xxg+s). ©) order parameteu of the broken Galilean symmetry obeys
the equation of motiong;u+V u=0. Despite the obvious

One example of is the spin density. Due to the close rela- Similarity to the Josephson equatida0], the Goldstone
tionship betweer. and B—the latter being, relativistically, modes of broken Galilean symmetries are not propagating
part of the 4-tensor of the angular momentum density—it issécond sound modes, but resemble the orbital waves of nem-
certainly not farfetched to question whether a correspondingtic liquid crystals.

extensive contribution to the booster may exist, _Unfortunately, we have nothing to say concerning pos-
sible microscopic mechanisms that realize broken Galilean

. symmetry. The system that spontaneously breaks this sym-
B:f d°x(ex—gt+k). (6)  metry needs to display indifference with respect to the iner-
tial system it chooses while being able to sustain a velocity

(Relativistically, the components of the 4-angu|ar-9radient in eq_uilibrium. And the relevan_t order_ parameter
momentum density mix under a Lorentz boost. Asdhe IS @ velocity difference. Such a system is admittedly hard to

extensive contribution of the angular momentum in oneCONCEIVe.

frame, will lead tok in others. The more precise question is

then whethek exists in the rest frame, same a§ Micro- Il. FRAME-INDEPENDENT THERMODYNAMICS
scopically,k may be conceived as arising from individual . . . I
mass dipole moments of the molecules or atoms that are nat Let us begin by deducing the thermodynamic equilibrium

compensated by shifting the coordinates of the particles, Sacondmons. Maximizing the entropy, or equivalently, mini-

. . . |¥1izing the energy, while holding constant the entropy and

because they are_embe_dded in a lattice, pivoted off Center'the conserved quantities, including especially the bodster
Although the intrinsic angular momentura has fre- we have

quently been included in hydrodynamic considerations, other
authors see this aad hocand inconsistent, becauses a
relaxing variable, and its inclusion only affects high fre- S fd3x8—'Al'J d3xs—,&J d3xg—\7-j d3xg
quency, nonhydrodynamic phenomena. Redefining the mo-
mentum density, they then argue tisatan always be chosen N .
to vanish, and therefore never needs to be considgfed - Q- f d®x(xx g)—A- f d*x(ex—gt)|=0, (7)
While the first part of this stance is fairly convincing, the
final conclusion excludes a whole category of hydrodynaminith ¥, 2, V, ©, andA being constant Lagrange param-
phenomena. These include especially the Einstein—de Haag, o iEm;)IO),/ing’ the local Gibbs relation
effect, in which a stationary magnetizable body starts to ro- ' '
tate when the external magnetic field is turned [8f The de=Tds+ udo +v-dg, ®)
vanishing velocityv of a stationary body also compels the
momentum densityg= v and the orbital angular momen- this can be written as
tum densityx X g to be zero. But the total angular momentum

L may still be finite in the presence of a magnetic figddif 3 - -~ A

there is a finite intrinsic angular momentwn H. If H is f d°X[(T—T)ds+(u—u—A-x)S¢

turned off,s vanishes, yet. must remain constant. Hence the

system starts rotating, as observed, to compensate. +(v—V—-Qxx+At)- 59]=0. 9)

The analogous effect for the booster would be given by
aligning the microscopic mass dipoles with an external elecFrom this follow the Euler-Lagrange equations
tric field, i.e., k~&. Turning the field off gets rid of the A o o A
alignment and killk. The orbital partM Ry compensates by T=T, p=p+tA-X, v=V+OXx—At. (10
displacing the crystal.

The proper way to account for this type of effects lies inComparing the last of Eq¢10) to the velocity field of Eq.
the middle ground between the above two extreme points of3), we find complete agreement with
view—taking s as either completely independent or utterly R ) R .
negligible. As discussed in Sec. IV, we should in fact accept A=OXR, Q=Q, V=R-QXR,. (11
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Excluding the conservation of the booster is equivalent to lll. THE DISSIPATIVE MASS CURRENT

settingA=QXR=0, cf. Eq.(7). This leads to the results of ¢ inclusion of the booster is clearly important for static,
Landau and Lifshitz, mentioned in the Introduction, Co”eathermodynamic considerations, but it is equally relevant for

for frames in whichQIIR. off-equilibrium, dynamic situations: First, the proof fgr

In a more deliberate approach, the input of E).is not =g, or that no dissipative mass current is allowed. As this
necessary: Varying also the time and space coordinates whilgroof follows closely the one that deduces the symmetry of
minimizing the energy yields two additional terms, the stress tensor from local conservation of angular momen-

tum, it aids comprehension to present both simultaneously.

f &X[--+ (DX g—Ap)- ox+ (A g)ot ]=0. (17 Rewrting the continuity equations for mass and momentum,

e +diJ;i=0, g+ d;ll;=0, 17)
Taking uniform transformations in time and spad&#, 6x
=const, as independent variations, we conclddeQxR  as
and (redundantly A- R=0. , _
/4 9:(€ V= ¢ .
Locally expressed, Eq$10) become N1 0y (€ Tmj) = €l Ty (18)
VT=0, duv;+dv;=0, do+Vu=0, (13 9y +d; (% =1Lt =Ji = i, (19

where /=xXg and b=px—gt, we immediately see that
€kI1y; andj—g have to vanish for the angular momentum
and the booster to be locally conserved.

Now, one may argue that it would be quite enough if
these two expressions can be written as divergences of some
currents,eji 1= dyoi andj;—gi= diJix , so they need not
vanish. But this neglects the following two points: First,
qualitatively,# andb contain the reference to the origin of
the coordinateg and ¢ do not. Consider a small volume
element far away from the origin, at distanBeandt=0,
then/ andb= gx will scale withR. Now, as we can change

the displacement of the surface, along the surface normal a by_simply relocating ‘h‘? origin, without altering any of the
at the area element?x. The unusual form is related to the P ysics,g/, aib, and their respective fluxes must also scale

fact thatP is not a constant, and the energy change depend@'th R. On the other hand, becaulig and) (as fluxes ofy

on where the volume change takes place. Ferconst, this and ) do not, neither doeiIly=dwo and Ji—g;

term reduces to the usual formP$d°xdu=—P dV. The :ﬁ'llf\k]liek ’s\évpclnzrc]i thc(?irnetfci)stemn;lrJeS t \L/ler:ﬁtr]aitive' Being currents of
last three terms of Eq14), i.e., the kinetic part of the en- P 9 : 9

: hydrodynamic variabled]l;; andy; are themselves functions
ergy, can be integratedor a sphergto become of these variables and their spatial derivatives. To lowest
Eyn=G%2M + (L —RyX G)2/20, (15) order,_ with no _spatlal derivative$l;; andj; cannot possibly

be written as divergences of some currents. In the next order,
the terms are mostly dissipative. TakirgIl,;, j—g as
finite, we find the entropy production to be given[dsl]]

which are useful for the off-equilibrium considerations be-
low. There are three corollary conclusions to draw.

(i) Integrating Eq.(8) over the system’s constant volume
while heeding Eqgs(10), we obtain the Galilean covariant
version of the extensive, basic formula of the thermodynam
ics,

dE=TdS+udM+V-dG+Q-dL+A-dB.  (14)

If the volume is allowed to vary, there is an additional term,
—$d>xPdu, with P=uo+Ts+v-g—& and du denoting

as it should® is the moment of inertia in the center of mass
frame.

(ii) Despite the manifest frame dependencewaindov in 1
Eq. (10), most quantities are properly frame independent. R="+e; i~ (J—09)-Vu, Q==Vxo.
Take, e.g., the density distribution under rotation: The 2
chemical potential of the local rest frameg= .+ 202, is a (20
fsligﬁtl?:m?eta?uﬁgs gﬁ ?ﬁsz,ﬁ%r ﬁiﬁglrxg Zegdlz?:; (f:?onm Edgpcording to the_ruleg of i_rreversible thermodynamics, if the
(10) and(11) that entropy production is given as a sum of products,

=3X,Y;, we may take the fluxeX; as proportional to the
1 1 thermodynamic force¥; [11], hence
V,LLOZV(,LL-I— §v2)=§V[Qx(x—R)]2 (16
€illi=4 i, J—9=—{»Vu, (21

depend.s only on the velocity in the center of mass frame, angnere {(1) and{,) are transport coefficients, similar to the

not onR, the center of mass velocity of a given frame. Soviscosity. (More accurately, thé&; are a linear combination

V 1o, and thereforeévg, remain unchanged under a Galilean of the Y;, so off-diagonal, cross terms are also possible.

boost. However, these terms always vanish if the diagonal ones do,
(iii) The Navier-Stokes equation dw/dt+VP/@¢=0 for  so they need no extra consideratioBEquations(21) lead to

divj+d;v;=0, anddo/dt+V uy=0 if in addition VT=0.  the entropy production

Rewriting dv/dt=dw + (v- V)v=dw — Vo2, it finally re-

duces to the third of Eq$13), o0+ V u=0. R="+{1) Q%+ {((Vu)? (22)
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which, however, contradicts Eq€l3): @ and Vu need not  The first implies instantaneous establishment of partial equi-
vanish even if all the three fields there do, in which casdibrium by local exchanges of angular momentum, between
equilibrium reigns withR=0. Therefore{(,), {(,) are zero, the reservoirg” ands; the second implies partial equilibrium
and € Iy, J— g vanish. by local exchanges of booster, betwdeandk. So instead

of an independent dynamicsandk assume the appropriate
values satisfying Eq€30), instantaneously during hydrody-
namic processes.

Allowing now intrinsic contributions, as in Eq$5) and For generic circumstances, this is indeed the case. There
(6), the energy density depends on two additional varialsles, are two terms in Eqg29),

andk, or

IV. INTRINSIC BOOSTER DENSITY

{yo={nyns=9710), {2a={2Yak=kKT102),

de=Tdst ude +v-dg+ w- ds+a-dk. (23

which show that both Eq$27) are relaxation equations, and
that Egs.(30) hold after the timer(;) and 7(,), respectively.
Generally speaking, these characteristic times, after which
local equilibrium is established, are microscopic in nature
and much faster than typical hydrodynamic time scales. And
taking these times as negligibly small is equivalent to the
limit {1y, {(2y—, and equivalent to substituting E¢S0)

for the equations of motiori27). Note, however, that this
dynamic dependency does not at all meaand k cannot

If the magnetic field is includedje=---+-dB, the en- remain full-fledged thermodynamic variables, as H@S)—
ergy is minimal fors, k, B=0, and the same expansion (26) clearly remain valid.

(again for an isotropic mediunyields From a more elevated point of view, we understand that
the universality and simplicity of hydrodynamic theories are
achieved by eliminating all relaxing variables, and expung-
ing all relaxation equations. As a result, the hydrodynamic

Itis this cross dependency that leads to the Einstein—de Haggeory is confined to frequencies much less than all relax-
effect discussed in the Introducti8]. Similarly, an electric  ztion rates .-

Barring an instability, the energy is minimal fors, k=0.
Therefore an expansion around the minimal valug,
would usually yield a quadratic dependencez= ey
+3(ywS*+ v(2)k?). (Isotropy is assumed, otherwisgy,
¥(2) are tensors rather than scalaBeing derivativesw and
a assume the form

(24)

w= ’)’(1)5, a= ‘}/(Z)k

field leads to

Because” +sandb+k are locally conserved quantities an
satisfy continuity equations, the new variables obey t

equations of motion,

(A possible source of confusion is the seemingly odd fact
that the transport coefficient§;) and {(,) were deduced to
be zero in the preceding section, yet argued to be diverging

d here. The explanation lies in the difference between the cali-
hdoers of the arguments: In the last section, the coefficients

were not negligibly small. Rather, they had to vanish identi-

cally to not contradict thermodynamics. Here, the coeffi-
(27) cients are finite, but well approximated Bywhen compared

to hydrodynamic time scales. In other words, if they are fi-
where\;; andy;; are the respective currents, functions of thenite, they are very large—and there is no contradiction.
local hydrodynamic variables, the explicit form of which we ~ One problem remains: The two termgI1; andj—gare
shall not derive here. The source terms on the right hand sideow indeterminate, as they are both products of an infinite
cancel those of Eq919), and ensure that’+s and b+k and a vanishing factor, cf. Eq&9). Nevertheless, they need
satisfy continuity equationgThe vanishing ofe;;IT; and  to be known before we may make use of the continuity equa-
g—J was deduced in the preceding section as a direct cons&ons for mass and momentum, Ed47). A clever way to
quence of/ andb being locally conserved quantities. As accomplish this is to go over to the new densifiés
this is no longer true, we have no prior knowledge of
whethere;; I1;, andg— are finite) Going through the same
hydrodynamic procedure as that leading to &), we find
the modified entropy production,

oS+ N = €ipllj,  aki+d;yi;=09i—Ji,

- 1 -
g=g+§(V><s), e=0—-V-k. (31

They are obtained by starting from E@3), with Egs.(30)

R:'"+fiijjk(Qi_wi)_(J_g)'(Vﬂ_a)y (28 incorporated,

and conclude as before,

de=---+v-dg+Q-ds+udo+V u-dk. (32
€illic={(Qimo), J=9=—La(Vu=a), 29 ppicis partially integrated to yield
If the two coefficients were exceedingly largéyy, {2 - -
—o, we may divide each of Eqg27) by the respective de=---+v-dg+udp, (33

coefficient and find the equations substituted by the two con-
straints, which shows first of all that the energy density is well ac-

counted for by the new densities. Putting the surface slightly

w=Q, a=Vu. (30 beyond the system’s volume, we also have
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5~ s 5~ 5 that follows from the energyde=---+&dD;+ (d;u)dk;,
f d xg:f d°xg, J d XQ=f d°xe, (34 k's dependence o8 impliesD’s on V, a quantity that can
be made to vanish by choosing an appropriate frame. In the
as the respective second terms of B;‘]_) are surface terms. absence of a magnetic fiel® is essentially frame indepen-
So we conclude thag and @ are also valid densities for d€nt, D(Vu)=D(0), or 9D;/d(d;u)=0. Hencedk;/d¢;
momentum and mass. Most crucially, because of =0. .
The diagonal termy;k=Vu=QXR remains, bug the
~ associated hydrodynamic effectg,V -k~ (duldp)d;V<o,
f d3x(x><g)=f d*(xxg+s), (39 are again an order smaller than the dissipative terms. They
may probably always be ignored. Nevertheless, understand-
and ing the treatment of a finitk is useful, both for its own sake
and for the consideration below of broken Galilean symme-

J d3X(5X—§t)=f d*x(ox—gt+k), (36) Lr); (although these systems do not necessarily have a finite

these new densities clearly absorb the_ intrinsic contributions,, poNTANEOUSLY BROKEN GALILEAN SYMMETRY
s, k, and therefore have fluxes for which
Thermodynamic and hydrodynamic theories account for
Eijkﬁjk:Oy J—g=0 (37)  the generic behavior of macroscopic systems that results
from conservation laws and broken symmetries. Although

hold. So it is indeed a good idea to takkeandg as the the specificity of its predictive power is, compared to the
hydrodynamic variablegBut it is now also possible to re- general input, frequently amazing, some subjects are simply

- . P~ ~ beyond its reach. One example is the question concerning
turn to the original variables: GiveH;; andy, it is easy to : . ) ! .
J possible microscopic mechanisms which lead to broken Gal-

obtainITj; =TIjj+ 5 € Sk, J=J— dk.) ilean symmetries, or in fact whether it at all exists. Fortu-
All this does not mean that no experimental consequencegately, we do not need this knowledge to give a full account
are related tes andk, as claimed in7]. For instance, the of the collective behavior of a system that breaks this sym-

constitutive relationsg= v and Eq.(25), or metry, and hereby filling the macroscopic half of a large gap
_ ) in one of our more basic concepts.
g=0v+ 3 VXsQ,B), (38 Starting with a system that breaks rotational invariance in

) ) _ all three directiongsay biaxial nematics or thB phase of
cannot be without consequences in the Navier-Stokes equayperfluidHe [12]) we take the infinitesimal rotation angle
tion, d,g;=11;; : A temporally varying but spatially homoge- d¢, as the order parameter, with the energy depending on its
neous B field will lead to an accelerationg,(pv)= gradient,

— o[V Xs(B)/2], at the system’s outer rim, the only place

where Vs is nonzero. The resultant rotary motion there de=---+Q;ds+ ¢;;d(d;6;). (40)
then propagates into the bulk, elastically in a solid and vis- .

cously in a liquid. Clearly, this is a temporally resolved, AN €xpansion of the energyleads togy~d; ¢; . The equa-

hydrodynamic description of the Einstein—de Haas effect. tions of motion in the rest frame possess the usual Hamil-

Other thermodynamic cross dependencieswill lead to tonian form,
similar behavior. The diagonal term all by itself, however, 0,0,=5c155=0Q;, a,5=—20cl60,=0,h;. (41)
while necessary for maintaining the thermodynamic stability, 7 bRt T b
is probably always negligibly small, as Eliminating 4,s; as outlined in the preceding section, the con-

tinuity equation for the momentum gets modified:

~ 1 1

is of the same order as the viscous terms. 9= hGi T 5 €ijkd;ISk= Eeijkﬂjﬁm¢km+'“ ,

In spite of the one-to-one analogy,

~ which leads to three pairs of orbital waves, of the form
de=dle—V-K] w~0?, with complex coefficient§12]. (A slight rearrange-

ment is needed to render the seemingly antisymmetric stress
tensor symmetrig.

The order parameter of broken Galilean symmetry is a
velocity field,u;, with the energy depending on its gradient,

instead of Eq(38), there is one crucial difference betwegn
andk: The quantity

9elIk=V u=Q xR
. . . ds:'“+(&ilu“)dki+‘]ijd(ajui)- (42)
depends on the inertial frame. As a result, thermodynamic
cross dependencies are ruled outkorTo understand why, An expansion leads td~ ;u; . The equations of motion in
considerk(&), the electric analog ad(8). Due to the Max-  the rest frame again possess the usual Hamiltonian form,
well relation
atui:_é(‘;‘/&ki:_aiﬂ, atki:58/5ui:_(9j\]ij .
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Eliminating d;k; as outlined in the preceding section, the VI. SUMMARY

continuity equation for the mass density gets modified: The three locally conserved densities that result from a

system’s invariance under Galilean transformation have been
9té:ﬁt9—3i3tki=—ﬁi(QUi—ﬁjJij), included as variables in the thermodynamic and hydrody-
namic theory. Utilizing their close analogy to the angular
omentum, the thermodynamics is rendered explicitly frame
ndependent, and dissipative mass currents are shown to van-
ish identically. In addition, two corollary results have been
obtained: First, in contrast to the useful concept of an intrin-
sic angular momentum density, an intrinsic booster density is

where the total mass current equals the momentum densit
Including nonlinear terms and the diagonal dissipative one
we have(dropping the tildg

Ui + (Vi) Ui+ dip = £9;3; =0, (44 shown to be one that we most probably need not embrace;
and two, the collective behavior of systems that spontane-
e +d,9i=0, gi=ovi—3a;J;. (45)  ously break Galilean symmetry have been derived.
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